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We study the scaling properties of randomly folded aluminum sheets of different thicknesses h and widths
L. We found that the fractal dimension D=2.30±0.01 and the force scaling exponent �=0.21±0.02 are inde-
pendent of the sheet thickness and close to those obtained in numerical simulations with a coarse-grained
model of triangulated self-avoiding surfaces with bending and stretching rigidity. So our findings suggest that
finite bending rigidity and self-avoidance play the predominant roles in the scaling behavior of randomly
folded plastic sheets.
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I. INTRODUCTION

Folded configurations of thin materials are very common.
Examples range from folded proteins and polymerized mem-
branes to folded engineering materials and geological forma-
tions �1�. Accordingly, the understanding of folding geom-
etry remains an active area of research, both theoretically and
experimentally �2–7�. It was noted that, despite the compli-
cated appearance of folded configurations, the folding phe-
nomena in themselves are very robust. Specifically, it was
found that a set of balls folded from thin sheets of different
sizes L�L obeys the fractal scaling law

M = �aL2 � RD, �1�

where M is the sheet mass, �a=�mh is the sheet areal density,
h is the sheet thickness �h�L�, �m is the material mass den-
sity, R is the ensemble-averaged diameter of balls folded
from sheets of the same size, and 2�D�3 is the material-
dependent fractal dimension of the set of the folded balls
�8,9,6�. For phantom sheets �membranes� without bending
rigidity, the Flory mean-field approximation predicts that the
mean diameter of the folded state behaves as R��log L,
whereas the folded state of self-avoiding sheets is expected
to obey the scaling behavior �1� with the universal fractal
dimension D=2.5 �see �10��. On the other hand, it was
shown that, for thin sheets with finite bending rigidity, the
scaling properties of the folded state are determined by the
balance of the bending and stretching energy stored in the
folded creases �see �11��.

Numerical simulations with a coarse-grained model of tri-
angulated surfaces with bending and stretching elasticity
suggest the universal values of D for the phantom
�D=2.67� and self-avoiding �D=2.3�2.5� sheets of fixed
thickness �5�. In addition, numerical simulations performed
in �5� suggest that the diameter of folded state scales with the
sheet size L, thickness h�L, and confinement force F as

R

h
� �L

h
�2/D� F

Yh
�−�

, �2�

and so

R

h
� �L

h
�2/D

h�, �3�

when F=const; here Y is the two-dimensional Young modu-
lus and � is the force scaling exponent, which is found to be
different for the phantom ��=3/8� and the self-avoiding
���1/4� sheets �see Ref. �5��. We note that the scaling be-
havior �3� differs from the scaling relation
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h
�2/D

, �4�

which was proposed by Bevilacqua �12� for balls folded
from plastic sheets of different thickness �h�L�. However,
as far as we know, the scaling relations �2� and �4� were
never tested experimentally. Accordingly, in this work we
studied the scaling properties of sets of balls folded from
aluminum sheets of different sizes L and thicknesses h.

II. EXPERIMENTS AND DISCUSSION

In this work, we used square aluminum sheets of thick-
nesses h=0.02, 0.06, 0.12, 0.24, and 0.32 mm with mass
density �m=2.4±0.1 g/mm3 and stretching yield stress 	y
=15±5 MPa �the bending yield stress is �L /h�2 times lower�.
The sheet edge length was varied from L0=60 mm to LM
=600 mm with the relation L=
L0 for scaling factors 
=1,
2, 3, 4, 5, 6, 7, 8, 9, 10. Hence, for the sheets used in this
work the ratio of bending to stretching rigidity varies in the
range from 2�10−9 to 5�10−5. Initially, all sheets were
crumpled by hand and then confined in approximately
spherical forms �see Fig. 1� by applying the same force F
=60 N along 15 directions taken at random �13�. In this way
1500 balls were folded.

FIG. 1. Images of �a� balls folded from an aluminum sheet of
thickness h=0.06 mm and edge size L=60 cm and �b� the cut
through this ball.
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The mean diameter Rj�L ,h�= �1/n�	i
nRi of each ball was

determined from measurements of Ri along n=15 directions
of confinement. Further, we calculated the ensemble-
averaged diameters R�L ,h�= 
Rj�L ,h��, where the angular
brackets denote the average over N=30 balls of the same
size �L� and thickness �h�. We found that, for almost all balls,
the distribution of Ri can be best fitted by an inverse Gauss-
ian distribution �14�, while the mean diameters Rj conform to
a normal distribution �see also �7��. We also noted that, in
contrast to the case of randomly folded paper balls �see �7��,
the diameter of a randomly folded aluminum sheet does not
change after the folding force is withdrawn.

A. Fractal dimension and density scaling

The fractal dimension of folded sheets of the same thick-
ness D�h� and the thickness exponent ��L� were determined
from the scaling relation

R � L2/Dh�. �5�

We found that the fractal dimension of randomly folded balls
does not depend on the sheet thickness �15� and equals D
=2.30±0.01 �see Fig. 2�a��. In addition, the thickness scaling
exponent is found to be independent of the sheet size and
equals �=0.35±0.01 �see Fig. 2�b��.

We note that the value D=2.30±0.01 is less than D
=2.5±0.2 reported in �16� for randomly folded aluminum
foils. This difference may be attributed to the fact that in the
work �16� the folding force was not controlled. On the other
hand, our finding is close to the value D=2.3 found in nu-
merical simulations of self-avoiding elastic sheets with bend-
ing and stretching rigidity �5�; nevertheless the folding de-
formations of aluminum sheets are predominantly plastic. It
should be pointed out that, while the fractal dimension is
found to be independent of the sheet thickness, and so it is
also independent of the bending rigidity k�Yh2, the finite
bending rigidity of aluminum sheets plays an important role,
such that the self-avoiding sheets with and without bending
rigidity belong to different universality classes, characterized
by D=2.3 and 2.5, respectively.

Furthermore, one can see that the data in Fig. 2 are con-
sistent with the scaling relation �3� with the force exponent

� = 1 − � − 2/D = 0.21 ± 0.02, �6�

close to the force exponent �=0.22±0.04 �17� estimated by
numerical simulations with the coarse-grained model �5�,
and so the scaling relation �4� is not valid. This may be
attributed to the dependence of the characteristic length of
folding creases, �, on the sheet thickness �see �7��, which
was not taken into account in �12�. Indeed, in Refs. �7,11� it
was shown that ��R, and so one expects that the character-
istic length of folding creases scales as ��L2/DF−�h� �18�.

Accordingly, the data collapse is shown in Fig. 3�a� in the
coordinates � /�h versus R /h, where the ball mass density �
scales as

� = �h�F��R

h
�D−3

for R 
 h , �7�

with the normalized factor depending on the sheet thickness
and the folding force �see Fig. 3�b�� as

�h�F� = �m� F

Yh
��D

, �8�

and so, from the data in Fig. 3 follows that Y =78 N/mm.
Notice that the mass densities of folded balls do not exceed
15% of the sheet density �m, while the normalized factors are
found to be �h��m for all h.

B. Energy scaling

The asymptotic analysis of the Von Karman equations for
a thin plate �19� predicts that the total elastic energy accu-
mulated in the folded creases of randomly folded phantom
sheet scales as �20�

Ef � YL3�L

h
�−1� h

R
�5/3

. �9�

This scaling was further confirmed in �21� by using analytic
methods and lattice simulations. The authors of �20,21� have
also argued that the self-avoidance does not affect the scaling
behavior of the total elastic energy stored in a randomly
crumpled sheet.

On the other hand, the scaling behavior of the folding
energy can be determined by the integration of the folding
force with respect to the ball diameter, using Eq. �2�. In this
way, the total folding energy is expected to scale as

FIG. 2. Log-log plots of �a� R versus 
 for different h �from
bottom to top, h=0.02, 0.06, 0.12, 0.21, and 0.28 mm�; �b� R versus
h for different 
. Straight lines are best fits �the slopes of the fitting
lines are �a� 2/D=0.87±0.01 and �b� �=0.35±0.01�.

FIG. 3. �a� Data collapse for � /�h versus R /h �the slope of the
fitting line is 3−D=0.7009, R2=0.98�; and �b� log-log plot of �h /�m

versus h �straight line is given by y=1.728x−0.4816, R2=0.98�.
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Ef � YL3�L

h
�2/D�−3� h

R
�1/�−1

, �10�

and so the scaling behavior of the folding energy is expected
to be different for the phantom and the self-avoiding sheets,
because of the difference in the scaling exponents. Specifi-
cally, for randomly folded phantom sheets D=1/�=8/3 �5�,
and hence the scaling relation �10� coincides with �9�,
whereas the self-avoidance leads to drastic deviation from
the scaling behavior �9�.

Indeed, taking into account that for randomly folded
aluminum sheets we found D=2.3 and �=0.21, from �9� it
follows that the scaling of the total folding energy,

Ed � YL3�L

h
�1.07� h

R
�3.72

, �11�

is indistinguishable �within the uncertainty of numerical
simulations performed in �5�� from the folding energy scal-
ing expected for randomly folded self-avoiding elastic sheets
�D=2.3 and �=0.22±0.04 �17��. Hence, the sheet plasticity
affects only slightly or not at all affects the scaling properties
of the randomly folded state. Notice that, in an elastic sheet,
the folding energy is stored in the folding creases, whereas it
is dissipated during the irreversible crumpling of plastic
materials �22�.

III. CONCLUSIONS

In summary, we found that the density of folded balls
scales as �=�h�R /h�D−3, where �h=�m�F /Yh��D and R�F−�.
Hence, sets of balls folded from plastic sheets of the same
thickness exhibit scale invariance with a mass fractal dimen-
sion that is found to be universal D=2.3±0.01. In addition,
the sets of balls folded from sheets of the same size but of
different thicknesses also display scale-invariant behavior
M �R1/�, but with different fractal dimension
Dh=1/�=1/ �1−�−2/D�=2.86±0.08.

Moreover, our findings suggest that the values of scaling
exponents for randomly folded plastic sheets are determined
by the effect of sheet self-avoidance, whereas randomly
folded elastoplastic paper sheets are characterized by a
material-dependent fractal dimension governed by the strain
relaxation after withdrawing the folded force �see Ref. �7��.
In addition, the numerical coincidence between the values of
the scaling exponents determined for plastic aluminum
sheets and those expected for self-avoiding elastic sheets
suggests that the sheet plasticity only slightly affects, or does
not affect at all, the scaling behavior of the folded state.
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